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 Junio, Ejercicio 1, Opción A 
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 Reserva 1, Ejercicio 1, Opción B 

 Reserva 2, Ejercicio 1, Opción A 
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 Reserva 4, Ejercicio 1, Opción A 

 Reserva 4, Ejercicio 1, Opción B 

 Septiembre, Ejercicio 1, Opción A 

 Septiembre, Ejercicio 1, Opción B 
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R  E  S  O  L  U  C  I  Ó  N 

 

 

Si no es extremo relativo, será un punto de inflexión, luego: '' (1) 0f   

 

(1) 1 1 1

'(1) 0 3 2 0 3 ; 3 ; 0

''(1) 0 6 2 0

f a b c

f a b a b c

f a

      


         
    

 

 

Luego la función es: 3 2( ) 3 3f x x x x    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Halla los coeficientes a, b y c sabiendo que la función :f   definida por 

3 2
( )f x x ax bx c     tiene en 1x   un punto de derivada nula que no es extremo relativo y 

que la gráfica de f pasa por el punto (1,1) .. 

MATEMÁTICAS II. 2018. JUNIO. EJERCICIO 1. OPCIÓN A. 
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R  E  S  O  L  U  C  I  Ó  N 

 

 

Como la función es derivable, también es continua. Estudiamos la continuidad en 1x  : 

 

 (1) 3f k   

2

1

1 1

1

lim (3 ) 3
2

lim ( ) lim ( ) (1) 3 2 ; 1
2 2

lim

x

x x

x

kx k

f x f x f k k k
k

kx k



 





 



  

         

  
  

 

 

Calculamos la derivada: 

2

2 1

'( ) 2
1

kx si x

f x
si x

kx

 


 
 


 

Y como es derivable, entonces: 

'(1 ) 2
2

'(1 ) '(1 ) 2 12
'(1 )

f k

f f k k
kf

k



 



 

        

  


 

 

Luego, el único valor posible es 1k  : 

 

 

 

 

 

 

 

 

 

 

 

 

Determina 0k   sabiendo que la función :f   definida por 

2
3 1

( ) 2
1

kx si x

f x
si x

kx

  


 




 

es derivable. 

MATEMÁTICAS II. 2018. JUNIO. EJERCICIO 1. OPCIÓN B.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

a) El vértice A tiene de coordenadas ( , )a a , ya que es un punto de la recta y x . Por lo tanto, la 

altura del rectángulo es a. 

 

b) El vértice B tiene de coordenadas ( , )b a a , y como es un punto de la recta 4y x  , se cumple 

que: 4 ( ) 4 2a b a b a      . 

 

c) La función que queremos que sea máximo es: 
2

max (4 2 ) 4 2S a a a a      

    Derivamos e igualamos a cero: max' 4 4 0 1S a a      

 

Luego, el área es máxima cuando 1a   

Se desea construir un rectángulo, como el de la figura, de área máxima. La base está situada 

sobre el eje OX, un vértice está en la recta y x  y el otro, en la recta 4y x  . Se pide: 

a) Halla la altura del rectángulo en función de a (ver figura). 

b) Halla la base del rectángulo en función de a. 

c) Encuentra el valor de a que hace máximo el área del rectángulo. 

 
MATEMÁTICAS II. 2018. RESERVA 1. EJERCICIO 1. OPCIÓN A.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

a) Primero estudiamos la continuidad de la función. 

 

Estudiamos la continuidad en 0x  : 
1

0

1 0 0

0

lim 0

lim ( ) lim ( ) (0)
lim 0

x

x

x x x

x

xe

f x f x f
xe



 







  



 

   

 


 Continua en 0x   

Estudiamos la continuidad en 1x  : 
1

1

1 0 0

1

lim 1

lim ( ) lim ( ) (1)
lim 1

x

x

x x x

x

xe

f x f x f
xe



 







  





   

 


 Continua en 1x   

Calculamos la función derivada: 

1

1

1

( 1 ) 0

( ) (1 ) 0 1

(1 ) 1

x

x

x

e x si x

f x e x si x

e x si x







   


   


 

 

Estudiamos la derivabilidad en 0x  :  

1

1

1
'(0 ) ( 1)

'(0 ) '(0 )
1

'(0 ) (1)

f e
e

f f

f e
e

 

 

 


     

  
  


 No derivable 

Estudiamos la derivabilidad en 1x  : 

0

0

'(1 ) 2 2
'(1 ) '(1 )

'(1 ) 0 0

f e
f f

f e



 



   
  

   

 No derivable 

b) Calculamos las asíntotas horizontales 

1

1 1

1 1
lim 0 lim lim 0x

x xx x x

x
x e

e e



         

  
        

  
 0y   es una asíntota horizontal 

en   

1

1 1

1 1
lim 0 lim lim 0x

x xx x x

x
x e

e e



         


       

 
 0y   es una asíntota horizontal en 

  

 

Considera la función :f   dada por 

1

1

1

0

( ) 0 1

1

x

x

x

x e si x

f x x e si x

x e si x







 


  




 

a) Estudia la derivabilidad de f en 0x   y en 1x  . 

b) Estudia la existencia de asíntotas horizontales de la gráfica de f. 

MATEMÁTICAS II. 2018. RESERVA 1. EJERCICIO 1. OPCIÓN B.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

a) Aplicando Pitágoras, vemos que 2100h x   

 

b) Área de la canaleta = Área del rectángulo – 2 Área del triángulo 

 

2 2 21
(10 2 ) 100 2 100 (10 ) 100

2
S x x x x x x             

 

c) Derivamos e igualamos a cero 

 
2 2 2

2

2 2 2

2

2 100 10 2 10 100
' 100 (10 ) 0

2 100 100 100

2 10 100 0 5 ; 10

x x x x x x
S x x

x x x

x x x x

      
        

   

        

 

 

Luego, el máximo es para 5x cm  

 

 

 

 

 

 

 

 

 

 

Se desea construir una canaleta, para la recogida de agua, cuya sección es como la de la figura. 

La base y los costados deben medir 10 cm y se trata de darle la inclinación adecuada a los 

costados para obtener una sección de área máxima. Se pide: 

a) Halla la altura de la canaleta en función de x (ver la figura). 

b) Halla el área de la sección de la canaleta en función de x. 

c) Encuentra el valor de x que hace máximo dicho área. 

 

MATEMÁTICAS II. 2018. RESERVA 2. EJERCICIO 1. OPCIÓN A.  
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R  E  S  O  L  U  C  I  Ó  N 

 

a) El dominio de la función ( )f x  es  1  

 Asíntotas Verticales: La recta 1x   es una asíntota vertical ya que 
1

lim ( )
x

f x


    

 Asíntotas Horizontales:  lim ( ) lim
1

x

x x

e e
f x



 


    
 

No tiene 

     
1

lim ( ) 0 0
x

e
f x y




    

 
 

 Luego, 0y   es una asíntota horizontal cuando x   

 Al tener asíntota horizontal, no tiene asíntota oblicua. 

b) Calculamos la primera derivada y la igualamos a cero: 
2

( 2)
' 0 2

( 1)

xe x
y x

x


   


 

 (―,1) (1,2) (2,) 

Signo y ' ― ― + 

Función D D C 

                                                                       

                                           No existe     mínimo 2(2, )e  

Creciente: (2, ) . Decreciente: ( ,1) (1,2)  . Mínimo en 2(2, )e  

c) Corte con el eje X: 0 0xy e     No corta 

    Corte con el eje Y: 
0

0 1 (0, 1)
1

e
x y      


 

 

Sea f la función definida por ( )
1

x
e

f x
x




 para 1x  . 

a) Estudia y determina las asíntotas de la gráfica de f. 

b) Determina los intervalos de crecimiento y de decrecimiento de f y halla sus máximos y 

mínimos relativos (puntos en los que se obtienen y valores que alcanza la función). 

c) Esboza la gráfica de f indicando sus puntos de corte con los ejes coordenados 

MATEMÁTICAS II. 2018. RESERVA 2. EJERCICIO 1. OPCIÓN B.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

 

a) Función que queremos que sea máxima: 
max 2S xy  

 

b) Relación entre las variables: 
5 5 20 5

20 4 5
4 4

y x
y x y

x

 
       

    
2 2

max

20 5 40 10 20 5
2 2

4 4 2

x x x x x
S xy x

  
      

 

c) Derivamos e igualamos a cero:  

max

20 10 20
' 0 2

2 10

x
S x


      

 

d) Comprobamos que corresponde a un máximo 

 

max

10
'' 0

2
S


    corresponde a un máximo independientemente del valor de x 

 

Luego, las dimensiones del rectángulo son base 2 4x m  ; altura 
5

2
y m   

Considera un triángulo isósceles en el que el lado desigual mide 8 cm y la altura 

correspondiente mide 5 cm. Calcula las dimensiones del rectángulo de área máxima que se 

puede inscribir en dicho triángulo (ver figura). 

 

MATEMÁTICAS II. 2018. RESERVA 3. EJERCICIO 1. OPCIÓN A.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

a) La recta 1 0 1x y y x       tiene de pendiente 1. La recta tangente como es paralela también 

tiene de pendiente 1, luego: 

 

'( ) 1 '( ) 1 1 (1 ) 1 1 0 1x x xf x f x e x e x e x x                   

 

La ecuación de la recta tangente en 1x   es (1) '(1) ( 1)y f f x     

 

Y como: 
1

(1) 1f
e

   

Luego, la recta tangente en 1x   es 
1 1 1

1 1 ( 1) 1 1y x y x y x
e e e

              

 

b) La función 
( 1)

( )
x

x

x x

x x e
f x x x e x

e e

  
     , no tiene asíntota vertical ya que no hay 

ningún valor de x que anule el denominador. 

 

Vamos a ver si tiene asíntota horizontal 

( 1) 1 ( 1) (1 ) 1
lim lim lim

(1 )
lim lim (1 ) 1

x x x x

x x xx x x

x x

xx x

x e e x e e x

e e e

e x e
x No tiene

e

  

 

          
    
 

  
     

 

 

lim x

x
x x e No tiene


     

Calculamos la asíntota oblicua y mx n  . 

 

( 1)

( ) 1
lim lim lim lim 1

x

x xx

x xx x x x

x e

f x e eem
x x e e   

 

 
     


 

 

 
( 1) 1 1

lim ( ) lim lim lim lim 0
x x x

x x x xx x x x x

x e x e x x e x
n f x mx x

e e e e    

            
                

       

 

Luego, la asíntota oblicua es: y x  

Sea :f   función definida por ( )
x

f x x x e
   

a) Calcula la ecuación de la recta tangente a la gráfica de f que es paralela a la recta 

1 0x y   . 

b) Estudia y determina las asíntotas de la gráfica de f. 

MATEMÁTICAS II. 2018. RESERVA 3. EJERCICIO 1. OPCIÓN B.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

Como 
0

0
lim

0x

tg x x

x sen x





, le aplicamos la regla de L’Hôpital 

 

22

2 3 20 0 0 0

0

1
1

0 1 cos 0 2coscoslim lim lim lim
0 1 cos cos cos 0 2cos 3cos

2 2
lim 2

2 3cos 2 3

x x x x

x

tg x x x x sen xx

x sen x x x x x sen x x sen x

x

   




  

     
      

  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calcula 
0

( )
lim

( )x

tg x x

x sen x




 

MATEMÁTICAS II. 2018. RESERVA 4. EJERCICIO 1. OPCIÓN A.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Función que queremos que sea máximo es: 
2

maxV x y   

 

b) Relación entre las variables: 
2

2 2 50 24
50 24 18 4 24 72

72

x
x xy x xy y

x


         

 

c) Expresamos la función que queremos que sea máximo con una sola variable. 

 
2 3

2 2

max

50 24 50 24

72 72

x x x
V x y x

x

 
      

 

d) Derivamos e igualamos a cero 
2

max

50 72 50 5
' 0

72 72 6

x
V x


        

 

e) Comprobamos que es máximo 

 

144 5 5
'' '' 0

72 6 3

x
V V x

  
       

 
Máximo 

 

Luego, las dimensiones son: 
5 5

;
6 9

x m y m   

 

 

 

x 

y 

x 

Se desea construir una caja sin tapadera de base cuadrada. El precio del material es de 18 

euros/m
2
 para los laterales y de 24 euros/m

2
 para la base. Halla las dimensiones de la caja de 

mayor volumen que se puede construir si disponemos de 50 euros. 

MATEMÁTICAS II. 2018. RESERVA 4. EJERCICIO 1. OPCIÓN B.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

Continua en 0x  :  

2

0

0 0 0 0

lim

22 0 2 0 0
lim lim lim lim 2

0 1 cos 0 0 cos

x

x x x x x x x x

x x x x

ax bx c c

ce e x e e e e e e

x sen x x sen x x



   



   

   

  

      

       
  

 

 

Máximo en 1 '( 1) 0 2 0x f a b          

 

La recta tangente a f en el punto de abscisa 2x    tiene pendiente 2 '( 2) 2 4 2f a b       . 

 

Resolviendo el sistema 
2 0

1 ; 2
4 2

a b
a b

a b

   
   

   
 

 

Luego, 1 ; 2 ; 2a b c     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considera la función :f   definida por 

2
0

( ) 2
0

( )

x x

ax bx c si x

f x e e x
si x

x sen x



   


   




. 

Determina a, b y c sabiendo que f es continua, alcanza su máximo relativo en 1x    y la recta 

tangente a la gráfica de f en el punto de abscisa 2x    tiene pendiente 2. 

MATEMÁTICAS II. 2018. SEPTIEMBRE. EJERCICIO 1. OPCIÓN A.  
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R  E  S  O  L  U  C  I  Ó  N 

 

 

Calculamos la derivada de la función: 

 

1
'( ) 2 1f x a bx

x
     

 

- Extremo relativo en 1 '(1) 0 2 1 0x f a b        

 

- Extremo relativo en 2 '(2) 0 4 1 0
2

a
x f b        

 

Resolviendo el sistema formado por las dos ecuaciones sale que: 
2 1

;
3 6

a b     

 

b) Calculamos la segunda derivada: 
2 2

2 1
''( ) 2
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a
f x b

x x
      

 

2 1 1
''(1) 0

3 3 3
f       Mínimo relativo 

 

2 1 1
''(2) 0

12 3 6
f        Máximo relativo 

 

 

 

 

 

 

 

 

 

 

 

Considera la función f definida por 2
( ) ln( )f x a x bx x    para 0x  , donde ln denota la 

función logaritmo neperiano. 

a) Halla a y b sabiendo que f tiene extremos relativos en 1x   y en 2x  . 

b) ¿Qué tipo de extremos tiene f en 1x   y en 2x  ?  
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